Non-commutative functional calculus: Unbounded operators
نویسندگان
چکیده
منابع مشابه
Non commutative functional calculus: unbounded operators
In a recent work, [3], we developed a functional calculus for bounded operators defined on quaternionic Banach spaces. In this paper we show how the results from [3] can be extended to the unbounded case, and we highlight the crucial differences between the two cases. In particular, we deduce a new eigenvalue equation, suitable for the construction of a functional calculus for operators whose s...
متن کاملNon commutative functional calculus: bounded operators
In this paper we develop a functional calculus for bounded operators defined on quaternionic Banach spaces. This calculus is based on the notion of slice-regularity, see [4], and the key tools are a new resolvent operator and a new eigenvalue problem. AMS Classification: 47A10, 47A60, 30G35.
متن کاملNon-commutative Functional Calculus
We develop a functional calculus for d-tuples of non-commuting elements in a Banach algebra. The functions we apply are free analytic functions, that is nc functions that are bounded on certain polynomial polyhedra.
متن کاملRepresentations of Hermitian Commutative ∗-algebras by Unbounded Operators
We give a spectral theorem for unital representions of Hermitian commutative unital ∗-algebras by possibly unbounded operators in a pre-Hilbert space. A more general result is known for the case in which the ∗-algebra is countably generated. 1. Statement of the Main Result Our main result is the following: Theorem 1. Let π be a unital representation of a Hermitian commutative unital ∗-algebra A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2010
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2009.09.011